

III Semester M.Sc. Examination, January 2019 (Semester Scheme) (CBCS) CHEMISTRY

301-OC : Organic Reaction Mechanisms

Time: 3 Hours

Max. Marks: 70

Instructions: Answer question No. 1 and any five of the remaining.

1. Answer any ten of the following:

 $(10 \times 2 = 20)$

- a) What is allylic rearrangement reaction? Explain with a mechanism.
- b) Predict the product and propose a mechanism.

c) What is the product of the following reaction ? Suggest a mechanism for its formation.

d) With a suitable mechanism give the product of the following reaction.

$$CH_3$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

- e) What is Norrish type II reaction? Explain with suitable example.
- f) How benzene gets converted into fulvalene photochemically? Explain with a mechanism.
- g) What is oxa-di- π -methane rearrangement? Explain with a mechanism.

h) Predict the product and propose a mechanism.

- i) With a suitable example give the mechanism of Claisen rearrangement.
- Predict the product and propose a suitable mechanism.

k) Suggest a suitable mechanism for the following conversion.

I) Give the product and a mechanism for the following reaction.

$$\sum_{\cos^{\theta}} \xrightarrow{\text{FAD}} ?$$

- 2. a) Give a comparative account of SE1, SE2 and SEi mechanisms.
 - b) Predict the products and propose mechanisms.

i)
$$CH_3CHO \xrightarrow{I_1/NaOH} ? + ?$$
ii) $OCC \xrightarrow{DCC} ?$
(4+6=10)

- 3. a) Write briefly on the mechanistic aspects of Sandmeyer reaction.
 - b) Predict the products and propose mechanisms.

(4+6=10)

- a) Draw the Jablonski diagram. Explain in detail all the possible transitions which can occur in a photochemical reaction.
 - b) Predict the products and propose mechanisms.

i)
$$0$$
 $\frac{h\gamma}{\text{iprOH}}$?

ii)
$$CH_3COOH ?$$
 (4+6=10)

- a) With a suitable example give the mechanism and the stereochemistry of the product formed in Paterno-Buchi reaction.
 - b) Predict the products and propose mechanisms.

i)
$$Ph$$
 Ph Ph

ii)
$$\bigcirc$$
 COO Ag $\xrightarrow{Br_2}$?

(4+6=10)

- 6. a) Write a note on:
 - Mechanism of [2+2] Cycloaddition reaction.
 - ii) Mechanism of aza-Cope rearrangement reaction.
 - b) Give an account of regio-, enantio- and endo- selectivities in Diels-Alder reaction.
 (6+4=10)

- 7. a) Sketch the mechanism of formation of non-oxidative decarboxylation of α -ketocarboxyltes by thiamine pyrophosphate.
 - b) With a suitable example, explain how vitamin KH₂ coenzyme assists the transfer of a carboxyl group to its substrates in nature.
 - c) With the help of FMO approach and a suitable example, explain the mechanism of Walk rearrangement reaction. (4+3+3=10)
- 8. a) Explain how coenzyme-A assists transfer of an acyl group to its substrates in biological systems.
 - b) Give a brief account of formation of methionine in nature by Vitamin-B₁₂ coenzyme, N⁵-Methyl tetrahydrafolate and SAM⁺.
 - c) Sketch the mechanism of transamination of amino acids by PLP. (3+3+4=10)